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ABSTRACT 

Wind power is playing an increasingly important role in present power grids due to innovative 
advancements in wind energy generation. Wind power and wind speed should always be accurately 
predicted in order to assess wind power for power system operation and planning properly. Due to the 
advancement of AI technologies, Deep learning, in particular, is increasingly being used in wind energy 
forecasting because of its outstanding capacity to handle complicated nonlinear challenges. The aim of 
this paper is to forecast the wind power, speed, and direction for a given historical wind data using two 
deep learning techniques; long short-term memory (LSTM) and gated recurrent unit (GRU). The 
experiment results show that GRU outperforms LSTM for a small number of epochs, but when epochs 
increase to a larger number, the behavior of both techniques is nearly equal, with a preference for LSTM 
with a mean square error of 0.03 %. 

INDEX TERMS- Wind power, forecasting, deep learning, gated recurrent unit, long short-term memory, 
wind speed, wind direction, and machine learning. 

 

1. INTRODUCTION 

Wind energy is a significant source of clean energy and a viable alternative to fossil 
fuels. Concerns about global warming and other environmental issues as well as the 
diminishing supply and decreasing quality of oil and gas, have all led to the rising 
interest in renewable resource globally. Predictions of wind speed and power that are 
both precise and accurate are the most important and important factors in making the 
right and most efficient operational decisions in the wind energy industry. Wind energy 
and forecasting are critical components of planning, controlling, and monitoring of 
smart wind energy systems[1]. 

Interconnecting wind energy to the grid imports high benefits in term of economic and 
environmental aspects. Wind energy, on the other hand, can cause severe 
complications in sustaining a safe and stable power source Because of the way the 
wind moves and changes the environment [2]. Wind power forecasting is a crucial part 
of enhancing the dependability and efficiency of the power system.. Wind farm 
placement, management, and control may all be improved by using this information. 
It can also serve as a foundation for executing power market transactions and 
connecting to distributed grids.[3]. 

It's impossible to program wind energy since it's a random and intermittent source of 
electricity that can alter dramatically even in the short term [4]. As a result, estimating 
and correctly predicting the amount of wind energy available at any particular time is 
challenging. This fluctuation complicates the operation of power systems. As a result, 
its potential energy production must be estimated or forecasted. Based on current and 
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historical data, a wind energy prediction tool is built to anticipate what could happen in 
the future [4]. 

Renewable and pollution-free wind power is attracting increasing attention as a source 
of electricity generation. The intermittent nature of wind power's energy output 
provides issues for the safety and stability of electric power networks on a large scale. 
Because of this, wind speed and power forecasts have become more important in 
system dispatch planning in order to minimize wind power variations.. Result of 
advances in artificial intelligence, particularly deep learning, forecasting of wind speed 
and power are becoming increasingly dependent on deep learning-based models 
because of their greater capacity to handle complicated nonlinear situations [5]. 

2. RESEARCH CONTRIBUTIONS 

Micro grids, smart buildings, and smart houses can't function without wind energy; it's 
a major source of electricity generation. As a result of its unpredictability and limited 
predictability, wind power is an intermittent power source. This has a substantial 
influence on the safety, stability, and dependability of large grid-integrated wind energy 
systems..  

Predicting future wind power accurately is one of the potential solutions to the above 
barriers. Lowering operational costs and enhancing wind power profitability and 
competitiveness will also be aided by the capacity to predict the future. This paper can 
help researchers by providing information about the recent deep learning techniques 
to be used for wind energy forecasting’s, such as gated recurrent unit (GRU) modeling 
and long short-term memory (LSTM) modeling.  

3. WIND POWER FORECASTING TECHNIQUES   

Wind-power forecasting has been conceived, planned, and implemented in a variety 
of ways. They can be classified into multiple groups according to various 
categorization criteria, as illustrated in Fig. 1. 

 

FIG. 1. WIND POWER FORECASTING CLASSIFICATION. 

We may divide models into two categories according to their forecasting objectives: 
wind turbine and wind farm wind energy prediction[6], [7]. a single wind turbines power 
output. Wind turbine data from a large number of turbines may be used to anticipate 
the total energy production of a wind farm. However, this method is far more difficult. 
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Wind power prediction systems can be categorized based on their timescales: There 
are four types of time horizons: short-term (within the next 30 minutes), medium-term 
(within the next six hours), and long-term (more than six hours up to one day or longer) 
(one day to one week and more ahead)[8]. Useful in turbine control and load-
monitoring, short-term and medium-term predictions are used for unit commitment 
planning, while long-term forecasts are used to identify the ideal time to carry out 
maintenance.[9]. Moreover, based on the type of prediction made, wind forecast 
models may be divided into deterministic and probabilistic types. [10]. Due to the 
complexity of the situation, deterministic models that provide just point wind 
power forecasts are limited in their forecasting performance and frequently generate 
inadequate forecasts with obvious mistakes. Probabilistic models, which frequently 
provide decision-makers with more insight than point predictions, can express 
uncertainty in terms of forecast intervals[11]. 

Based on the differences in modeling philosophy, Four types of forecasting models 
exist, physical models, traditional statistical models, AI-based models, and a 
combination of the three (hybrid). In this case, we're talking about physical models, 
e.g., weather researcher forecasting (WRF)[12] and numerical weather prediction 
(NWP)[13], which typically take a variety of meteorological parameters into account. 
Some of the most common traditional statistical models are the autoregressive 
integrated moving average (ARIMA)[14], the autoregressive moving average 
(ARMA)[15], and the fractional-ARIMA (f-ARIMA)[16]. Because it is a time series 
model that may be used to quantify the linear fluctuations in wind power at various 
locations, it differs from physical techniques. In general, forecasts in wind power 
forecasting perform well, especially in short and medium-term time frames. 

Artificial Intelligence (AI) models have also been widely employed in wind power 
forecasting due to advancements in computer science. There are many techniques 
used in wind power forecasting, such as; support vector machine (SVM)[17], [18], 
extreme learning machine (ELM)[19], fuzzy logic method, back propagation neural 
network (BPNN)[20], multi-layer perception (MLP)[21], long short-term memory 
(LSTM)[22], convolution neural network (CNN)[23], gated recurrent unit (GRU)[24] 
and recurrent neural network (RNN)[25]. 

By integrating multiple types of the above models can build the Hybrid models to 
interpret various aspects of wind power volatility. Based on their hybrid techniques, 
hybrid prediction models are classified into two types in the literature: weight-based 
models and stacking-based models. The estimates of one or maybe more base 
models are typically regarded as features by stacking-based forecasting models, 
which are then merged with another higher-level model[26]. With regards to the 
weighted prediction model, they can be constructed using a diverse set of 
forecasters[27]. 

The structure of various prediction methods has a considerable impact on their 
effectiveness, thus, many researchers utilize various forms of intelligent optimization 
strategies to identify the best configurations of various wind power forecasting models. 

4. LONG SHORT TERM MEMMORY 
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LSTM has been formulated to solve the conventional RNN's long-term dependence 
issue since learning about the connections becomes increasingly difficult as the 
distance between relevant inputs increases. It is a variant of the RNN model that is 
defined by the presence of a cell state[28].The LSTM consists of three gates: input 
gate, forget, and output gate. The sigmoid layer and point wise multiplication are used 
to control the significance of each gate. Fig.2 illustrates the architecture of the LSTM. 

 

FIG.2. LSTM ARCHITECTURE[28]. 

The LSTM cells can be mathematically described as follows using the connections 
illustrated in Fig.2[28]: 

𝑓𝑡 = 𝜎(𝑊𝑓ℎℎ𝑡−1 +𝑊𝑓𝑥𝑥𝑡 + 𝑏𝑓)       (1) 

𝑖𝑡 = 𝜎(𝑊𝑖ℎℎ𝑡−1 +𝑊𝑖𝑥𝑥𝑡 + 𝑏𝑖)         (2) 

�̃�𝑡 = tanh(𝑊𝑐̃ℎℎ𝑡−1 +𝑊𝑐̃𝑥𝑥𝑡 + 𝑏𝑐̃)  (3) 

𝑐𝑡 = 𝑓𝑡 ⋅ 𝑐𝑡−1 + 𝑖𝑡 ⋅ �̃�𝑡                     (4) 

𝑜𝑡 = 𝜎(𝑊𝑜ℎℎ𝑡−1 +𝑊𝑜𝑥𝑥𝑡 + 𝑏𝑜)     (5) 

ℎ𝑡 = 𝑜𝑡 ⋅ tanh(𝑐𝑡)                        (6) 

Where𝑥𝑡, ℎ𝑡, and 𝑜𝑡 represent the input data, the recurrent, and the output data of 
each cell at time t, in sequence,𝑓𝑡represent the forget gate, 𝑐𝑡donates the LSTM’s cell 
state,𝑊𝑖, 𝑊𝑐̃, and𝑊𝑜 represent the network weights,the operator ‘⋅’ used for the 
multiplication of two point wise vectors and 𝑏1is the bias. 

As the cell state is updated, the input gate determines which new information can be 
recorded in the cell state and which data can be produced depending on the cell state. 
The forget gate has the ability to determine what information is discarded from the 

current cell state. Once the forget gate, 𝑓𝑡, has a value of 1, and it retains this data; 
when it has a value of 0, it discards all information. 

According to the findings, the forget and output gates are the most critical components, 
and removing any of them results in severe performance reductions across the 
network. In addition, the list of parameters and the computational cost may be lowered 
without significantly impacting network performance by changing the connected input 
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and forget gate.. Due to its significant capability, LSTM has been the focal point of 
deep learning, and its used to a variety of tasks [28]. 

5. GATED RECURRENT UNIT 

The LSTM cell has a greater ability for learning than the typical recurrent cell. The 
additional factors, however, increase the amount of computational load used. The 
gated recurrent unit (GRU) was developed. Fig.3 illustrates the architecture of the 
GRU. 

 

FIG.3. GRU ARCHITECTURE [28]. 

The mathematical formulas for the GRU cell are as follows, based on Figure 3, which 
represents the information bellow[28]: 

𝑟𝑡 = 𝜎(𝑊𝑟ℎℎ𝑡−1 +𝑊𝑟𝑥𝑥𝑡 + 𝑏𝑟)                          (7) 

𝑧𝑡 = 𝜎(𝑊𝑧ℎℎ𝑡−1 +𝑊𝑧𝑥𝑥𝑡 + 𝑏𝑧)        (8) 

ℎ̃𝑡 = tanh(𝑊ℎ̃ℎ(𝑟𝑡 ⋅ ℎ𝑡−1) +𝑊ℎ̃𝑥𝑥𝑡 + 𝑏𝑧)(9) 

ℎ𝑡 = (1 − 𝑧𝑡) ⋅ ℎ𝑡−1                                   (10) 

To minimize the number of arguments, the GRU cell incorporates the LSTM cell's 
forget and input gates as an update gate. There are only two gates in the GRU cell: 
an update gate and a reset gate. Which resulted to; it is possible to save a single 
gating signal and its associated parameters. The GRU is essentially LSTM with the 
addition of a forget gate. Due to the absence of one gate, the single GRU cell is less 
powerful than the LSTM in its entirety. 

6. WORK STRUCTURE 

The physical model of this study is explained in Fig.4. Moreover, the overall work 
structure of this study is described in Fig. 5. The procedure of the study is explained 
as steps in detail below: 

Step1: Preprocessing the data: Since the GRU and LSTM networks are sensitive to 
the scale of the input data. A normalization process is required to ensure that all data 
is consistent. [0, 1]. 
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Step2: Training the GRU/ LSTM model: For training, eighty percent of the newly 
reframed data is used, while twenty percent is used for validation testing. 
Predetermined training sets are utilized for the GRU/LSTM model to be trained. 

Step3: Forecasting with GRU/ LSTM model the goal is to predict future wind power 
speed and direction rates based on past processing dynamics. The data for the future 
can be found in the testing set developed in step 2. Testing inputs must therefore be 
iteratively revised to reflect their predicted value each time. 

It is, therefore possible to apply the optimum GRU/LSTM model to acquire the 
matching testing set's findings. Once the output data has been de-normalized, the final 
results may be achieved. 

 

 

 

FIG.4. DAY AHEAD WIND ENERGY PREDICTION PHYSICAL MODEL. 
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FIG.5 THE WORKFLOW OF THE PROPOSED APPROACH. 
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7. CASE STUDY 

The data were collected from the Sotavento wind farm which is used in this study. The 
Sotavento wind farm is located In Spain, Galicia (43.354377 +N, 7.881213+ W, m.a.s.l. 
).  It has a total capacity of 17.56 MW and is made up of 24 turbines. The historical 
wind energy, direction, and speed output of this wind farm's 24 wind turbines with a 
10-minute resolution in 2016 can be collected. As a result, each variable receives 144 
sets of datasets per day [29]. Figures (6-8) illustrate the wind energy, speed, and 
direction performance within one year, respectively. 

 

FIG.6. WIND ENERGY PERFORMANCE IN ONE YEAR. 

FIG.7. WIND SPEED PERFORMANCE IN ONE YEAR. 
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FIG.8.WIND DIRECTION PERFORMANCE IN ONE YEAR. 

Seasonal variations in wind speed and direction are clearly evident. In spring, the wind 
speed varies more widely than in any other season. In the spring, the predominant 
wind direction in the southwest, while in the summer, strong winds come from all 
directions. In the fall and winter, the Low-speed wind blows from the northeast and 
east, with the former being the most prevalent direction. 

8. RESULTS AND DISCUSSIONS  

After applying the proposed forecasting techniques (GRU and LSTM)  in the 
mentioned case study, the results show that in terms of mean squared error (MSE) 
and mean absolute error (MAE), the GRU outperforms LSTM when the number of 
epochs less than 500. However, in the case of having a higher number of epochs, both 
algorithms perform very closely with preference to LSTM in some cases. Tables (1-3) 
show the prediction results in terms of wind energy, speed, and direction. 

Since the loss function of an LSTM and GRU model with fixed architecture varies with 
the training process, the number of epochs has an impact on their performance. 
Tables (1-3) show the results, respectively. The proposed models' loss function for the 
real-world case is high before the 500th epoch, indicating that the model is not yet well 
trained. The model should only be used to anticipate once the loss function has 
stabilized. Excessive training, on the other hand, may result in an overfitting issue, 
lowering reliability. 
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TABLE.1: WIND ENERGY PREDICTION RESULTS. 

No. of 
Epochs 

GRU Evaluation of Training 
Data 

LSTM Evaluation of Training 
Data 

Loss 
Mean 

Squared 
Error 

Mean 
Absolute 

Error 
Loss 

Mean 
Squared 

Error 

Mean 
Absolute 

Error 

10 6.35 6.35 16.8 6.32 6.32 17.03 

50 5.01 5.01 15.32 5.85 5.85 16.24 

100 2.98 2.98 11.15 4.3 4.3 14.31 

500 0.18 0.18 3.01 0.52 0.52 4.52 

1000 0.1 0.1 2.28 0.1 0.1 2.24 

5000 0.05 0.05 1.51 0.03 0.03 1.07 

 
TABLE.2: WIND SPEED PREDICTION RESULTS. 

No. of 
Epochs 

GRU Evaluation of Training Data LSTM Evaluation of Training Data 

Loss 
Mean 

Squared 
Error 

Mean 
Absolute 

Error 
Loss 

Mean 
Squared 

Error 

Mean 
Absolute 

Error 

10 2.77 2.77 11.49 2.7 2.7 11.43 

50 2.55 2.55 11.2 2.6 2.6 11.2 

100 2.03 2.03 10.3 2.39 2.39 11.06 

500 0.17 0.17 3.03 0.16 0.16 2.98 

1000 0.04 0.04 1.63 0.13 0.13 2.24 

5000 0.01 0.01 0.9 0.01 0.01 0.55 

 
TABLE.3: WIND DIRECTION PREDICTION RESULTS. 

No. of 
Epochs 

GRU Evaluation of Training 
Data 

LSTM Evaluation of Training 
Data 

Loss 
Mean 

Squared 
Error 

Mean 
Absolute 

Error 
Loss 

Mean 
Squared 

Error 

Mean 
Absolute 

Error 

10 9.07 9.07 18.24 9.08 9.08 18.65 

50 7.01 7.01 16.39 7.38 7.38 16.74 

100 4.77 4.77 13.28 5.75 5.75 14.25 

500 1.54 1.54 6.35 0.24 0.24 3.3 

1000 0.05 0.05 1.61 0.37 0.37 3.63 

5000 0.02 0.02 0.85 0.02 0.02 0.9 

 

The testing set is by far the most important for the model validation since the testing 
set's results are what is really wanted. As a result, the testing set's results are 
examined further. The MSE  and MAE  of the two methods are graphically illustrated 
in Fig. 9 and 10, respectively. As shown, while the number of epochs increases, the 
performance of both algorithms works identically. However, for the first 500 epochs 
GRU outperforms the LSTM. 
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FIG.9. GRU AND LSTM FORECASTING MAE. 

 

FIG.10. GRU AND LSTM FORECASTING MSE. 

9. CONCLUSION 

The wind is considered to be a promising source of energy currently, and it's attracting 
a lot of attention from all over the world. Wind energy is beneficial to the conservation 
of worldwide natural resources. Wind power, on the other hand, is uncontrollable, and 
inner instability keeps the usage rate low. The ability to accurately predict wind power 
and wind speed have become increasingly important in the pursuit of renewable 
energy sources. 

In this study, wind power, speed, and direction historical data for one year were used 
to predict the short-term performance of wind power. Two common deep learning 
techniques were used; GRU and LSTM. The results show that for a low number of 
epochs, GRU outperforms the performance of LSTM; however, when the number of 
epochs increases, the performance of both techniques is almost the same, with a 
preference for LSTM with MSE of 0.03%. 
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